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Formulas and procedures for B-spline and progressive polynomial hases includ­
ing Marsden's identity, the blossoming and de Boor-Fix forms of the dual
functionals, the Oslo algorithm, and recursive procedures for evaluation differen­
tiation. and hlossoming are extended to arbitrary polynomial, and locally linearly
independent spline, hases. 1994 Academic Press. Inc

1. INTRODUCIION

Blossoming [15, 19,25,26,27,30], the de Boor-Fix dual functionals [12],
Marsden's identity [23], the Oslo algorithm [16,22], recursive procedures
for evaluation and differentiation [10, 11]: these are topics usually associ­
ated only with B-splines, But all these formulas have local polynomial
interpretations, The purpose of this paper is to extend these formulas and
techniques to totally arbitrary polynomial, and locally linearly independent
piecewise polynomial, bases. These extensions help to unify the theory of
univariate polynomials and splines, and they also provide some additional
perspective on the special status of the Bernstein and B-spline bases.

We begin in Section 2 by generalizing Marsden's identity to arbitrary
polynomial bases, Then we apply Marsden's identity in Section 3 to
generate the blossoming and de Boor-Fix forms of the dual functionals.
From the dual functionals we derive change of basis algorithms in Section
4, and general recursive algorithms for evaluation, differentiation, and
blossoming in Section 5. In Section 6 we present some concrete examples
to flesh out the details of the theory, and we extend our results from
polynomial bas~s to locally linearly independent spline bases. We revisit
our formulas for Marsden's identity and the de Boor-Fix dual functions
and discuss what is so special about these particular formulas in Section 7,
In Section 8 we develop necessary and sufficient criteria for extending the
blossoming form of the dual functionals to multivariate polynomial bases,
Finally, we close in Section 9 with a brief summary of our work and a few
open questions for future research.
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2. MARSDEN'S IDl'NTITY AND DUAL POLYNOMIAL BASES

Let (Bi,,(t)} be the B-splines of degree n associated with the knot vector
(t), and let 1[f11l(t) = ({'+ 1 - t) ... ({!+" - t). Then Marsden's identity is
the formula [23]

(1)

Essentially Marsden's identity is an extension of the binomial theorem to
B-splines (see Section 6). This formula plays a fundamental role in the
theory of B-splines. Indeed most of the properties of univariate B-splines
can be derived directly from this simple identity [3, 13].

We begin by extending Marsden's identity to arbitrary polynomial bases.
This extension will play a central role in much of the discussion that
follows.

THEOREM 2.1. Let bo( x), ... , b,,( x) be a basis for the polynomials of
degree n in x. Then there exists a unique collection of polynomials
do({)' ... , d,,( t) of degree n in t such that

(2)

MOreOl'ef do(t), ... , d"(t) is a basis for the polynomials of degree n in t.

Proof Since bo( x), ... , b,,( x) is a basis for the polynomials of degree n
in x, for each t there must be unique constants d o( t), ... , d,,(t) indepen­
dent of x such that

(x - t)" = L,d,(t)b,(x).

To show that di t), ... , dll ({) form a basis for the polynomials of degree n
in t, differentiate Eq. (2) n - k times with respect to x and evaluate at
x = 0 to obtain

k = 0, I, ... , n.

Thus for k = 0, ... ,n , we can write t k as a linear combination of
do(t), .. . , d,,(t). Therefore the functions do(t), .. . , d,,(t) span the space of
polynomials of degree n in t, and since there are n + I functions in this
set they must necessarily form a basis for the polynomials of degree n in t.

Q.E.D.

We shall call the bases bo(x), ... , bll(x) and do(t), ... , d/t) that appear
in Eq. (2) dual polynomial bases. As we shall see in subsequent sections,
these bases are dual in two senses. First, various formulas and theorems
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remain valid when a basis is replaced by its dual. Second, the dual basis
can be used to represent the dual functionals of the primary basis.

In certain applications such as computer aided geometric design (CAGD)
it is desirable that the basis functions be normalized to sum to one. A pair
of dual bases cannot be normalized simultaneously. The following results
tell us how normalizing one basis affects it dual basis.

LEMMA 2.2. Let bO<x), ... ,b,,(x) and do(t), ... ,d,,(t) be dual polyno­
miaL bases. Then

j=O,I, ... ,n.

Proof Differentiating Marsden's identity (Eq. (2» n times with respect
to t, we obtain

Clearly then

d;"l(t) = (-l)"n!, j = 0, 1, ... , n = L,b,(x) = 1.

Conversely, if Ljb/x) = I, then

L;( -l)"n!b;(x) = L,d~")(t)b,(x) = d)")(t) = (-l)"n!,

j=O,I, ,n. Q.E.D.

THEOREM 2.3. Let bo(x), ... ,b,,(x) and do(t), ,d,,(t) be dual poly-
nomial bases, and leI Til; ... , Ti" be Ihe rools of diU), j = 0, I, ... , n. Then

j=O,I, ... ,n.

Proof This result follows immediately from Lemma 2.2. Q.E.D.

At the other extreme from bases normalized to sum to one are triangu-
lar bases. A basis bo(x), , b/x) is said to be trianguLar if and only if
Deg{bk(x)} = k, k = 0, , n.

THEOREM 2.4. A basis bO<x), ... , b,,(x) is triangular, if and only if its
dual basis do(t), ... , d,,(t> in reL'erse order is triangular. That is,

Deg{bk(x)} =k,k = O,I, ... ,n - Deg{d,,_k(t)} =k,k =O,I, ... ,n.

Proof Suppose that bo( x), ... , b,,(x) is triangular. Then by differen-
tiating the Marsden identity (Eq. (2» n times with respect to x, we obtain

11 ! = d" ( t ) b~,") ( X ) .
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Hence clearly Dcg{d) t)} = O. Now suppose that Deg{d" -l t)} = j for
j < k and proceed by induction on k. Differentiating the Marsden identity
(Eq. (2») n - k times with respect to x, we obtain

Since the left hand side is a polynomial of degree k in t, the right hand
side must also be a polynomial of degree k in t. Hence by the inductive
hypothesis, Dcg{d" _k(r)} = k. The proof of the converse is essentially the
same. Q.E.D.

3. DUAL FUNCTIONALS: BLOSSOMIN(,

AND TilE DE BOOR-FIX FORMULA

Dual functionals are important in the theory of polynomials and splines
because they allow us to calculate the coefficients of an arbitrary polyno­
mial or spline with respect to a fixed basis. They are also important
because the dual basis may be simpler than the original basis. Thus it is
sometimes easier to work in the dual space than in the primal space.

Paralleling two standard approaches to dual functionals for B-splines,
we are going to develop two approaches to dual functionals for arbitrary
polynomial bases: the blossoming method [25-27] and the de Boor-Fix
formula [12]. Both techniques will be derived directly from our version of
the Marsden identity (Eq. (2»).

3.1. Blossoming

Let p(t) be a polynomial of degree n. The blossom or polar form of
p(r) is the unique, symmetric, multiaffine polynomial B[ p ](U l' ... , U,,)
which reduces to p(r) along the diagonal. That is, the blossom
B[p](u j , ••• , Il,,) is independent of the order of the variables u l , ... , utI'
each variable appears to at most the first power, and S[ p](r, ... , t) = p(r).

We shall give three explicit formulas for the blossom of a polynomial
p(r) depending on the information available for p(r). Most commonly, if
p(t) is represented in monomial form, then

where Sk(U 1"", Il,,) is the kth elementary symmetric function on
II p ... , u

ll
• This formula establishes the existence and uniqueness of the

blossom of p( t ).
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Another approach, closely related to the de Boor-Fix formula for the
dual functionals which we shall discuss in Subsection 3.3, is to let
1/'[u 1, ••• , u,Jt} = (u, - t) ... (u" - t). Then

B[ p]( UI' ... , u,,) = Lk [ ( - I)(" -k lin!1p(k l( T) 1/'(" -k)[ UI' ... , U,,]( T).

(3)

Notice that the right hand side of Eq. 0) is independent of T because its
derivative with respect to T is zero. Moreover, it is easy to check that the
right hand side is symmetric, multiaffine, and by Taylor's theorem reduces
to pCt) when u, = t for i = I, ... , n. A detailed discussion of this blossom­
ing formula and its relationship to the de Boor-Fix dual functionals is
given in [2). A derivation of the blossoming form of the dual functionals
from the de Boor-Fix formula is provided in [21].

Our first two approaches to blossoming assume that we know the
derivatives of pet) at some parameter To Suppose instead that we know
the roots of pet) as well as its highest order coefficient. That is, pet) =
{( - I )"p("lCt )In!}(r I - t) .. . (r" - t). Then we can express the blossom of
p{t) using permanents [24].

The permanent of an n X n matrix M = (Mi ) is defined by

Thus the permanent is similar to the determinant but without the alternat­
ing signs. Hence whereas the determinant is an antisymmetric function of
its rows (columns), the permanent is a symmetric function of its rows
(columns). Now the blossoming formula is simply

Again it is easy to check that the right hand side of Eq. (4) is symmetric,
multiaffine, and reduces to p( t) when u; = t for i = I, ... , n.

This last blossoming formula requires some further explanation as well
as a word of caution. First, the roots of the polynomial p{t) may be
complex. This anomaly causes no difficulty in the blossoming formula (Eq.
(4». Indeed for polynomials with real coefficients, complex roots come in
conjugate pairs and the permanent in Eq. (4) evaluated at conjugate pairs
is real.

More troublesome are polynomials with roots at infinity-that is, poly­
nomials of degree m < n. In this case to apply Eq. (4), we must homoge­
nize the permanent with respect to the roots, replace the coefficient
(-l)"p(")(t}/(n!)2 by (_l)"'p,m)(t)/m!n!, replace the finite roots r, by
(r i , I), and replace the n - m roots at infinity by n - m copies of
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8 = (1,0). With these alterations, Eq. (4) remains valid. From here on
whenever a polynomial has roots at infinity, we shall adopt the preceding
conventions without further comment; however, for simplicity, all our
theorems and formulas are stated only for polynomials with finite roots.

Similarly, whenever we need to evaluate a blossom at an infinite
parameter value, we shall first homogenize the blossom, or equivalently
replace the multiaffine blossom by the multilinear blossom [25], and then
replace the infinite value by 8 = (1,0). In addition, whenever p(r) has
11 - m roots at infinity, we must replace the leading coefficient
(- J)"p(")(r)jn! by (- J)"'p("')(r)jm!. Again, we shall adopt the preceding
conventions without further comment, though for simplicity all our theo­
rems and formulas are stated only for blossoms evaluated at finite values.

Now we can prove the following interesting identity which we will have
occasion to apply in Section 5.

TIIEO/{EM 3.1. LeI p( I) be a polynomial ofdegree n wilh rools PI' ... , P",
and let q(t) be a polynomial of degree n with roots QI"'" Q". Then

Proof. By Eq. (4) we have

B[ pH QI"'" Q,,) = (< -1)" p(")( t )j( n !)2}Perm( P, - Qj)

B[q](PI, ... ,P',) = (_I)"ql")(/)j(nl)2}Perm(Q;-lj)

from which the desired result easily follows. Q.E.D

For further information on blossoms and polar forms as well as other
explicit formulas for the blossom, see [27].

We can generate various useful extensions of Marsden's identity by
blossoming both sides of Eq. (2) with respect to either I or x or both.
Starting with Marsden's identity, this approach yields the identities

(x - t)" = L,d;(t)b;(x) (2)

(x - td (x - I,,) = L;B[d;H/I, ,t,,)b;(x) (5)

(XI - I) (x" - t) = L,B[b;](xl, ,x,Jd,(t) (6)

(I/n!)Perm(x
f

- td = L;B[d,](/I, ... ,/,,)B[b,Hxl, ... ,x,,), (7)

where in Eq. (7) we have used the fact that the blossom of (x I - t) ...

(x" - t) evaluated at I" ... ,l" is (ljnl)Perm(xj - Ik ). By Eq. (4), the
blossoms on the right hand side of Eqs. (5)-(7) are also constants times
permanents, so these formulas are actually identities involving perma-
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nents. Notice too that all of these identities are essentially equivalent, and
that each identity holds for all pairs of dual bases. For B-splines these
formulas appear in [34] where they were derived by blossoming the
original version of Marsden's identity.

3.2. Blossoming and Dual FunctionaL~

Blossoming can be used to find the B-spline coefficients of any spline.
Indeed, if {Bj/l(O} are the B-splines of degree n associated with the knot
vector (t;> and if S(t) is a spline of degree n with the same knots, then
there are constants c j such that

Moreover the coefficients C j are given by the formula

C j = B[S](tt+I, .. ·,t,+/l),

where the blossom of S on the right hand side is the blossom of the
polynomial which represents S on any interval affected by c j [25-27]. In
this sense blossoming provides the dual functionals for the B-splines since
it furnishes a technique for calculating the B-spline coefficients of any
spline. Notice that to find c j ' we blossom S(t) and evaluate at the roots
of 1f'i/l(t), the function that multiplies Bi/l(t) in the original version of
Marsden's identity (Eq. (I ». We now extend this blossoming formula for
the B-spline coefficients to arbitrary polynomial bases.

LEMMA 3.2. Let b()(x), ... , b/l(x) and d()(t), ... , d/l(O be dual polyno­
mial bases, and let 'J I' ... , 'i/l be the roots of d / t). Then

B[bj]('il''''''i/l) = (-I)/ln!/dt>(t), i =j

=0, i*j.

Proof From Eq. (6)

Since 'JI"'" 'in are the roots of d}O, the left hand side is just a constant
multiple d/O. In fact, we have

But d()(t), ... , d/l(O is a polynomial basis; therefore the coefficients of
d j ( t) on the left hand side and the right hand side must be identical, so the
result follows. Q.E.D.
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THEOREM 3.3. Let hoLd, ... , h,,( X) and do( t), ... , dj t) be dual poly­
nomial hases, and let rjl , ... , rj" he the roots of d/t). If p(x) is any
polynomial in x of degree n, then

That is, the coefficient of b/ x) is gil'en by a constant times the hlossom of
p( x) el'aluated at the roots of d/t).

Proof Since blJ(x), ... , b,,(x) is a polynomial basis, there exist con­
stants co' ... , c" such that

Blossoming both sides with respect to x, evaluating at rjl , ... , rj", and
applying Lemma 3.2, we obtain

and the result follows by solving for cj ' Q.E.D.

By Theorem 3.3, given a polynomial basis bo( x), ... , b,/ x) there exist
constants "YO""'"Yn and parameters Sjl"'" Sj" such that if p( x) =
L; c;h,(x), then

We now show that the constants "Yo,"""Y" and the parameters Sjl"'" Sj"
are unique.

THEOREM 3.4. Let bo(x), ... , b,,(x) and do(t), ... , d"Ct) be dual poly­
nomial bases, and let rjl , ... , rjll he the roots of d/t). Suppose that there
exist constants "Yo" .. '"Yll and parameters Sjl' ... , Sjll such that

implies

Then

and

Proof Consider the polynomial p(x) = (x - tY'. Since bo(x),
... , b,,(x) and do(t), ... , d,,(t) are dual polynomial bases, it follows by
Marsden's identity (Eq. (2» that
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Now by hypothesis

Therefore for all t
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so the result follows. Q.E.D.

The constant factors (- I)ndj")(t)/n! that appear in Theorems 3.3, 3.4
are an annoyance. Indeed if Deg {d/t)} = m < n, we must replace
(- I)"dj"l(t )jn! by (- I)"'dj"'l(t)/m!. In addition, we must homogenize
the blossom of. p( x) and replace the n - m roots at infinity by n - m
copies of {) = (I, 0) (see Subsection 3.1). However, when the basis func­
tions bo( x), ... , b,,( x) are normalized to sum to one, then by Theorem 2.3
these factors disappear and we have the following elegant result.

THEOREM 3.5. Let bo(x), ... ,b,,(x) and do(t), ... ,d,,(t) be dual poly­
nomial bases, and let ril , ... , ri" be the roots of di( t). If Llb;( x) = I, then
for any polynomial p(x) of degree n

where

That is, the coefficient of bi(x) is gil'en by the blossom of p(x) emluated at
the roots of d/t).

Proof This result follows immediately from Theorem 3.3 and
Lemma 2.2. Q.E.D.

3.3. The de Boor-Fix Formula

The blossoming form of the dual functionals requires us to calculate the
roots of the dual basis. But even for relatively low degree polynomials,
these roots may be hard to compute. Fortunately, only symmetric func­
tions in the roots are actually essential for the dual functionals. The
coefficients of the dual basis with respect to the Taylor expansion are also
symmetric functions of the roots. Moreover by applying the techniques in
the proof of Theorem 2.1, these coefficients can be computed using only
linear algebra. Therefore in the formulas for the dual functionals it would
be desirable to replace the roots by the derivatives of the dual basis. This
we now proceed to do by adopting an alternative approach to the con­
struction of the dual functionals analogous to the de Boor-Fix construc­
tion of the dual functionals for the B-splines.
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Let f( I), g( I) be polynomials of degree n and define

The operator [[( I), g( I)]n is a bilinear form on the vector space of
polynomials of degree n; that is,

(i) [[(I), g(t )]" is a constant independent of T,

(ii) [f(l), g(t )]" is bilinear.

The first property follows because the derivative with respect to T of the
right hand side of Eq. (8) is zero. The second property is a consequence of
the linearity of differentiation.

In addition to these two basic properties, the bilinear form [[( I), g( I)J,.

satis.fies the following three important identities:

(iii) [f(t), (x - I)"]" = f( x ),

(iv) [[(t),(x - 1)"-kJ,. = {(n - k)!/n!}f(k)(x),

(v) [f(t), (u, - I) ... (u" - I)]" = B[f](u" ... , u,,).

Properties (iii) and (iv) follow directly from Taylor's theorem or more
simply by evaluating the right hand side of Eq. (8) at T = x; property (c)
is simply a restatement of Eq. (3). Notice that properties (iii) and
(iv) are special cases of property (v) with (u l ' ••• , u,) = (x, ... , x) or
(u" ... ,u,,) = (o, ... ,o,x*, ... ,x*). where 0 = (I,O) and x* = (x, 1).

Let (Bi,,(I)} be the B-splines of degree n associated with the knot vector
{t), and let 1[fi,,(t) = (r1+' - t)··· (r1+" - r). Then the de Boor-Fix for­
mula [12] is

(9)

where [Bm(r), 1[/,,,(1)],, is evaluated at any parameter T such that t j + I <
T < t j +". (Strictly speaking we have only defined [[(r), g(t)]n for polyno­
mials. However, since B;,.{t) is a piecewise polynomial, there is certainly
no difficulty as long as we do not evaluate [Bi,,(r), 1[fjll(r)]n at a knot. On
the other hand, at a knot, 1[fj,,(r) has a zero of multiplicity at least as high
as the discontinuity in the derivatives of B,)t). Hence the terms on the
right hand side of Eq. (8) where the derivatives of Bill(r) jump are
annihilated by the corresponding derivative of 1[/,,.{t). Thus [Bill(r), 1[/,,.{r)],,
is well-defined for t j + I < T < t j +".) If S(r) is a spline of degree n with
knots {t), then certainly

S(t) = Eic;B;,,(t).

Now it follows immediately from Eq. (9) and the bilinearity of [[(r), g(I)]1l
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that the coefficients C i are given by the formula
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In this sense the de Boor-Fix formula provides the dual functionals for
the B-splines since it furnishes an alternative technique for calculating the
B-spline coefficients. It is this formula for the dual functionals that we
shall now extend to arbitrary polynomial bases.

THEOREM 3.6. Let bo(x), ... , b,,(x) and do(r), ... , dll(r) be dual poly­
nomial bases. Then

Proof By Marsden's identity (Eq. (2» and properties (ii) and (iii) of
[f(t), g(t)ln

b,(x) = [b;(t),(x - t)/L = [b,(t),LjdJ(t)b/x)]"

= L j [b/ t), dj(t)]" bj( x).

Since the polynomials bo(x), ... , bn(x) are linearly independent, the co­
efficients of b/x) on both sides of this equation must be identical, so the
result follows. Q.E.D.

THEOREM 3.7. Let bo(x), ... , b,,(x) and do(r), ... , d,,(t) be dual poly­
nomial bases. If p( x) is any polynomial in x of degree n, then

where

Proof This result follows immediately from Theorem 3.6 and the
bilinearity of [f(t), g(t)ln' Q.E.D.

Theorem 3.7 extends the de Boor-Fix form of the dual functionals to
arbitrary polynomial bases. This result achieves our goal of replacing the
roots of the dual basis by the more readily accessible Taylor coefficients in
the formulas for the dual functionals.

Finally combining the blossoming and de Boor-Fix forms of the dual
functionals, we have the following corollary.

COROLLARY 3.8. Let rj1 , ... , rjn be the roots of d/t). If p(x) is any
polynomial in x of degree n, then
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Proof This equality follows immediately from Theorem 3.3 and Theo­
rem 3.7. Notice too that this result is essentially equivalent to the blossom­
ing formula in Eq. (3). Q.E.D.

4. CHANG!' OF BASIS

We now apply the dual functionals developed in Section 3 to derive
change of basis algorithms for converting B-spline curves to piecewise
polynomials with respect to arbitrary polynomial bases. We shall also use
the dual functionals to extend a duality principle for transformations from
progressive and Polya bases to arbitrary pairs of dual polynomial bases.

4.1. The Oslo Algorithm

The original version of the Oslo algorithm was a knot insertion proce­
dure for B-spline curves [16]. However in [7] it was shown that a local
variant of the Oslo algorithm can also be used to convert a polynomial
from any progressive basis to any other progressive basis. Here we shall
show how to apply a local variant of this procedure to convert from any
progressive basis to any arbitrary polynomial basis. Thus we shall establish
that the Oslo algorithm can be used to convert a B-spline curve to a
piecewise polynomial with respect to any arbitrary polynomial basis.

A degree n polynqmial hasis ho( x), ... , h
ll

( x) is said to he progressil'e if
there are 2n parameters t"t 2 , ... ,t 2,I' t j +1I i= t j for I::s; i::s;j::s; n, called
knots such that for any polynomial p( x)

That is, the coefficients of p( x) are given by its blossom evaluated at
consecutive knots. By Theorem 3.5 this condition is equivalent to the dual
basis d o(t ), ... , d Il( t) being given hy

dJt) = (t'+1 - t)··· (t[+11 - t), i={),I, ... ,n.

This dual basis is sometimes called a Polya basis [3,5,6]. The Bernstein
basis is the progressive basis with knots (0, ... ,0, 1, ... , 1), and the mono­
mial basis is the progressive basis with knots (0, ... ,0,0, ... ,0) [7, 20]. Any
B-spline basis is locally (over a single knot interval) a progressive basis, but
not every progressive basis can be extended to a B-spline [7].

Given the n + 1 values B[ p ](t I' ... , t ,,), ... , B[ p](tn + I' ... , t 2n)' we can
compute any blossom value B[p](u" ... , u,,) recursively by the following
algorithm due to Ramshaw [25].
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Recursil'e Algorithm for Computing Blossom Values.

Let
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i = 0, ... , n

Bir(UI,· .. ,ur ) = [(t;+II+I-r - u r )/(t;+II+I-r - tt)]B;_lr_I(U" ... ,u r _ l )

+[(U,. - (i)/(t;+1I+1-r - t;)]B;r_I(U 1,· .. ,U r _ 1)

where r = 1, ... ,11 and i = r, ... ,11.

Then

B i r (u" , U ,.) = B[ p ](u l ' , U,., t i + I' ... , (i + n - r )

BIIII(u), , u
lI

) = B[p](u l , , u,,).

Notice that this algorithm simply inserts U i at the ith level of the
recursion. This algorithm can be derived easily from the symmetry and
multiaffine properties of the blossom [25]. We illustrate this procedure for
cubic polynomials in Fig. 1. When the progressive basis is the restriction of
a B-spline basis to the knot inteIVal [('I' (II + 11 and the new knots u I' ... , U II

/\
/"- /\

/\/"'-/\
FI(;. I. A schematic view of the Oslo algorithm for cubic polynomials. Here a triple lI/W

represents the blossom value B[pj(II.I', w), and the arrows represent the affine comhinations
in the recurrence. Notice that this algorithm simply inserts 11, at the ith level of the
recursion.
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lie in this interval, then this algorithm is a variant of the Oslo algorithm
[ 19].

Now given the coefficients of a polynomial p( x) with respect to the
progressive basis b()( x), ... , h,,( x), we can apply this recursive algorithm
n + I times to find the coefficients of p( x) relative to any other basis
because by Theorem 3.3 these coefficients are (up to constant multiples)
the blossom of p( x) evaluated at the roots of the dual basis. Thus the Oslo
algorithm is a general change of basis procedure from progressive to
arbitrary polynomial bases provided that we know the roots of the dual
basis. For example, we can apply this variant of the Oslo algorithm to
convert a polynomial from the Bernstein basis to any other polynomial
basis by replacing the parameter t by different roots of the dual basis on
each level of the de Casteljau algorithm. More generally, we can use the
Oslo algorithm to convert a B-spline curve to a piecewise polynomial with
respect to any arbitrary polynomial basis.

4.2. Dual Transformations

The change of basis transformation between any pair of progressive
bases is known to be the transpose of the transformation between the
corresponding dual bases in the opposite direction [3,5,20]. Here we
generalize this duality principle to arbitrary pairs of dual polynomial bases.

THEOREM 4.1. Let {hk(x), dk(t)} and {Bk(x), Dk(t)} he two pairs of
dual polynomial bases of degree n. Then

Proof Let hi(x) = LJ\I(jB/x) and let Di(t) = LjNijd/t). Then by
Theorem 3.5

Mik = [LiMijBj(x), Dk(x))" = [b,(x), Dk(x)]"

Nik = [bdx),LijN,jdj(t))" = [bdx),Di(x)]".

Hence Nik = Mk,. Q.E.D.

We can give an alternative proof of this result using blossoming by
applying Theorem 3.3 and Eq. (4). Let R kl , ... , R kn be the roots of
Dk(x), and let I'il"'" rin be the roots of b;<x). Then

M;k = {( -l)"Dkn)(t)/n!}B[b;](R kI , .. ·, R kn )

= {b)'I)(t)Df'l(t)/(n!)J}Perm(rif! - Rk,J



DUAL POLYNOMIAL BASES 325

and similarly

Nik = {bkll)(t)/n!}B[Di](rkl,· .. ,rkll)

= {(-I)" D!/I)(t)bj;l)(t)/(n!)3}Perm(R;q - rkp )·

Hence again we conclude that N,k = M ki .
Since the change of basis matrix is also the matrix which transforms the

coefficients of any polynomial with respect to the one basis to the coeffi­
cients with respect to the other basis, we have the following result.

COROLLARY 4.2. Let {b/x), dk(t)} and {Bk(x), Dk(t)} be two pairs of
dual polynomial bases of degree n. If M is the matrix which tramforms the
coefficients of a polynomial with respect to the basis {b/x)} to the coeffi­
cients with respect to the basis {Bk(x)}, then M T is the matrix which
transforms the coefficients of a polynomial with respect to the basis {Dk(x)}
to the coefficients with respect to the basis (dk(x)}. That is, the transforma­
tion between two polynomial bases is equivalent to the transpose of the
transformation between the corresponding dual bases in the opposite direc­
tion.

The Oslo algorithm can be used to find the change of basis matrix from
any progressive basis to any polynomial basis. Therefore, by taking the
transpose of this transformation matrix, we can use the Oslo algorithm to
find the change of basis matrix from any polynomial basis to any Polya
(progressive dual) basis. In particular, since the Bernstein basis is self dual
[7,20], we can use this approach to find the change of basis matrix in
either direction between the Bernstein basis and any polynomial basis.

5. RATIONAL RECURRENCES FOR BLOSSOMING, EVALUATION,

AND DIFFERENTIATION

In Subsection 4.1 we saw that one variant of the Oslo algorithm is a
recursive procedure for evaluating the blossom of a polynomial given its
coefficients with respect to a progressive basis. Using this variant of the
Oslo algorithm to compute the blossom along the diagonal provides us
with a recursive evaluation procedure for polynomials in progressive form.
For B-spline curves this recursive procedure is the de Boor evaluation
algorithm [10]. We can also compute derivatives recursively using the Oslo
algorithm. Let p(t) be a polynomial of degree n. If we replace the
multiaffine blossom by the multilinear blossom and evaluate this blossom
at (8, ... ,8, t*, ... , t*), where t* = (t, 1),8 = 0,0), and 8 is repeated k
time, then it can be shown that [7,27]

{(n -k)!/n!}p<kl(t) =B[p](8, ... ,8,t*, ... ,t*). (10).
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(We shall give a simple derivation of this formula at the end of this
section.) Thus the Oslo algorithm can be used to compute the derivatives
of p( t) given its coefficients with respect to a progressive basis.

We shall now extend these recursive procedures which are well-known
for B-spline and progressive bases to arbitrary polynomial bases. One
difference we shall find is that for B-spline and progressive bases these
recursive procedures are linear in the parameters at each stage of the
recurrence while for arbitrary polynomial bases these algorithms are
rational of high degree. Another difference is that for B-spline and
progressive bases these recursive procedures consist of real affine combi­
nations while for arbitrary polynomial bases the affine combinations may
be complex.

Let boed, ... , bll(x) and do(t), ... , dn(r) be dual polynomial bases. The
key to our approach is to work with the dual basis rather than with the
primary basis. To simplify this discussion, we shall assume that the primary
basis bo(x), . .. , bn(x) is normalized to sum to one so that by Theorem 2.3
the dual basis functions do(t), ... , dn(t) have the form

d/t) = (r jl - t)··· (rjn - t), j = 0, I, ... , n.

To begin, we will describe a recurrence that computes the polynomial
ll(t) = (u l - t) ... (lin - t) from the polynomials dlJ(t), ... , d,,(t).

The Polynomial Recurrence (Root Insertion Algorithm).

Let

B,o(t)=di(t) i=O,l, ... ,n

B)u l,···, llr](t)

= Cir_l(lll"'" llr)B,r_l[lll"'" llr_I](r) - Ci_Ir_l(lll"'" llr)

xBi_1r_I[1l1"'" ur_I](t)

where

Ci r - I( III , ... , II r) = B, - I r - I[u I , ... , Ur- I ]( II r) / {Bi - I r- I [lll ' ... , II r _ I ]( II,.)

- Bjr_l[u l,···, lI r _ I](lI r )}

Ci-lr-l(lIl"'" llr) = B;r_l[lll"'" llr-I](llr)/{B,_lr_l[lI l,···, lI r_ I](II,.)

-Bir _ l[lI l,···, llr_I](lI r )}

for r = 1, ... , n, i = r, ... , n.

Then



DUAL POLYNOMIAL BASES 327

The key to establishing this recurrence is to observe that by construction
Ur is a root of Bir[u" ... , ur](t} for i = r, ... , n. Moreover if U" , u r _,
are roots of Bjr_t[UI"",Ur_I](t} for j = r - I, ... ,n, then u, ,ur _ 1
are also roots of Bir[u t , ... , ur](t). Therefore it follows by induction on r
that u" ... ,u" are roots of B",Jut, ... ,u,,](t). Thus the polynomial recur­
rence is actually a root insertion algorithm since it inserts the root U r at
the r th stage of the recurrence. Finally, it also follows easily by induction
on r that the coefficient of t" in B)u" ... , ur](t) is (- I)"-this is the
reason for the normalizing constant in the denominator of c,r_'(u" ... , u,).
Hence since Deg{B,,[ul, ... ,ur](t)} = n, we conclude that

Notice that if some of the roots U r are complex, then the affine
combinations in the polynomial recurrence-that is, the constants
Cir_I(U" ... ,ur)-may also be complex. Nevertheless, if u(t) is a polyno­
mial with real coefficients, the result of the polynomial recurrence is a
polynomial with real coefficients.

The polynomials B;,[u l , ... , ur](t), i = r, ... , n, at the rth level of the
recurrence are linearly independent. This property also follows by induc­
tion on r. Indeed, it is certainly true for r = O. Moreover, the polynomials
at the rth level are simple two term combinations of the polynomials on
the (r - I)st level. Thus it is easy to show by induction on i that

We have described the polynomial recurrence for the general setting,
but many special situations may arise. We now discuss what to do in these
special cases.

First, if the leading coefficient of d/t) is not (- I)1l, then we set

where m is the degree of d/t).
Second, if the denominator of cir_l(u" ... ,ur ) is zero, then we must

replace

by
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where p is the first integer such that

Such an integer p must exist because we know that

since all the polynomials at the (r - I )st level are linearly independent.
Finally, if

then we must replace the denominator

Bi_lr_I[UI,···,Ur_\](Ur) - Bir-\[UI"",Ur_I](Ur)

by Bi-I r_ I [ U\ , ... , Ur- 1 ]( Ur ) .

If, in addition,

then simply set

Notice that this recurrence is rational in the parameters U\"'" un'

However, even though the polynomials Bir_\[UI, ,ur_I](Ur) are, in
general, degree n in u r' because Bi_\r_I[ll\, , ur_\](t) and
Bir_,[u\, ... ,ur_I](t) share r - 1 common factors, the rth level of this
recurrence is only degree n - r + 1 in the numerator and degree n - r in
the denominator. The degree is one lower in the denominator because the
highest order terms cancel. We illustrate the entire algorithm for cubic
polynomials in Fig. 2, and we focus in on one step of this algorithm in
Fig. 3.

Notice that the algorithm shown in Fig. 2 simply inserts the factor
(u i - t) at the ith level of the recursion.

Now this polynomial recurrence can be used to generate recursive
procedures for blossoming, evaluating, and differentiating polynomials
represented with respect to an arbitrary polynomial basis. There are two
approaches to deriving these algorithms from the polynomial recurrence,
both based on dual functionals: the first uses the de Boor-Fix formula, the
second the blossoming method. We shall look at each approach in turn.
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FI(;. 2. A schematic view of the polynomial recurrence (root inserIion algorithm) for cubic
polynomials. Here a triple lIlW represents the polynomial (Ii - r)(,. - r)( w - r), asterisks
represent unknown linear factors, and the arrows represent the ralional coefficients, c", in
the recurrence.

First, consider the de Boor-Fix formula, Let p(t) = L,ic,bi(t) be a
polynomial of degree n, Then by Eq, (3)

B[p](up .. "u,,) = [p(t),(u l - t) ", (u" - t)]",

Now let us apply the operator [p(t), L to every element B,J u I' . , , , U r](t )
in the polynomial recurrence. Since [f( r), g(t )]" is bilinear, the polynomial

H (t)(u-t)

-G(u) _ / '"----;: F(u)
F(u) - G(u) / ~(U) - G(u)

Fm Get)

FIG. 3. One step of the polynomial recurrence (root insertion algorithm). The polynomial
at the apex is computed by multiplying the polynomials at the base by the expressions along
the corresponding arrows and adding the results. When I = II, the result is zero, so (Ii - tl
must be a factor of the polynomial at the apex. Moreover common roots of F(t) and G(t) are
also roots of H(t). Notice that the labels along the arrows are rational functions of II.
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recurrence now becomes a recursive procedure for computing [p{t), U{t )]"
from [p( 0, dc/ t)]", ... , [p( 0, dll( OJ". But by Theorem 3.7

and by Eq. 0)

Therefore when the polynomials doU), ... , d/t) at the base of the recur­
rence are replaced by the coefficients CO"," c" of p{t), the polynomial
recurrence becomes an algorithm for computing the blossom values
B[ p ](u l ' ... , u,,) from the coefficients of p( 0.

We could also derive this blossoming recurrence directly by blossoming
arguments. Let PI"'" P" be the roots of p(t). Now blossom every
element B)u], .. . , ur]U) in the polynomial recurrence and evaluate these
blossoms at the roots PI"'" p". Since blossoming is a linear operator, the
polynomial recurrence now becomes a recursive procedure for computing
B[u](PI, ... , P") from B[do](P}, ... , P,,),,,,, B[dll](PI, ... , P,). But it fol­
lows from Theorem 3.1 that

B[u](PI, ,P,,) = {n!/p(")(t)}B[p](ul, .. ·,u,,)

B [d j I(PI' , P,,) = {n! / p (,,) ( t ) }B [ p ]( rj I ' ... , rj ,,),

where rjl , .•• , rj" are the roots of d/O. Moreover by Theorem 3.5

Removing the common factor n!/p(")(O, we find again that when the
polynomials do(O, .. . , d,,(O at the base of the polynomial recurrence are
replaced by the coefficients Co', .. , c" of p(O, the polynomial recurrence
becomes an algorithm for computing the blossom values B[ p ](u l , ... , u,,)

from the coefficients of p(t).
Once we have established this blossoming recurrence, it is an easy

matter to derive recursive procedures for evaluation and differentiation. If
we replace u; by x for i = 1, ... , n, then the recurrence for computing
B[p](u!, ... , un) becomes a recurrence for computing B[p](x, ... , x) =

p(x). Thus we get a recursive evaluation algorithm for p(x). Similarly, if
we homogenize the blossoming recurrence and replace (U I , ... , un) by
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(o, ... ,o,x*, ... ,x*), then by Eq. (IO) the recurrence for computing
B[p](ll" ... ,ll/l) becomes a recurrence for computing B[p](o, ... ,o,
x*, ... ,x*) = {(n - k)!/n!}p(k)(x). Homogenizing the blossoming recur­
rence and evaluating at (0, ... , 8, x*, ... , x*) is equivalent to setting

on the first k levels of the recurrence. Thus the derivative recurrence is
often considerably simpler than the evaluation recurrence. Notice that, in
general, these recurrences for blossoming, evaluation, and differentiation
have complex-valued, high degree, rational coefficients C ir • Nevertheless,
at the final stage these algorithms collapse to real-valued polynomial
functions.

The evaluation recurrence provides a recurrence for the basis functions
boLd, ... , b/l(x). If we set C iO = 0ij at the base of the evaluation recur­
rence, then the basis function bj ( x) emerges at the apex. Thus b/ x) is the
sum of all paths from the base to the apex of the triangle (see Fig. 2>­
We can also run this recurrence in reverse by placing a I at the apex of
the triangle and reversing the arrows in Fig. 2. The basis functions
bo(x), ... , bn(x) will then emerge at the nth level of the recurrence at the
base of the triangle. In a similar manner we can compute the blossoms or
the derivatives of the basis functions.

Given the coefficients of a polynomial p(x) with respect to any basis
bo( x), ... , b,,(x), we can apply the blossoming recurrence to find the
coefficients of p( x) relative to any other basis because by Theorem 3.3
these new coefficients are (up to constant multiples) the blossom of p( x)

evaluated at the roots of the dual basis. Thus the blossoming recurrence
can be used as a general change of basis procedure; from this perspective
the blossoming recurrence is yet another generalization of the Oslo
algorithm.

Because these recursive procedures for evaluation, differentiation, blos­
soming, and change of basis are high degree rational functions in the
parameters, they may not be too useful in the general case. But when
consecutive dual basis functions share common roots, these degrees may
be substantially reduced. For B-spline and progressive bases, these algo­
rithms reduce to the standard recursive procedures for evaluation, differ­
entiation, blossoming, and change of basis. These standard procedures are
linear at every stage of the recurrence precisely because consecutive
polynomials in the dual basis share n - I common roots.

One final observation about the origins of these recursive procedures
for blossoming, evaluation, and differentiation. These three recursive
procedures are actually consequences of the following three identities
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(iii) [p(t),(x - I)"]" =p(x) = B[p](x, ... ,x),

(iv) [p(t), (x - t)"-k]" = {(n - k)!/n!}p(k)(x) = B[p](D, ... , D,

x*, .. . , x*),

(v) [p(t),(u l ~ t) ... (u" - t)]" = B[p](u" ... , u,).

Now our three recursive procedures have the following interpretations:
To generate the blossoming recurrence, we place (u l - t) ... (u" - t) at
the last stage of the polynomial recurrence and we insert the factor Ui-I

at the i th level; to generate the evaluation recurrence, we place (x - I)" at
the last stage of the polynomial recurrence and we insert the factor x - I

at each level; and to generate the derivative recurrence, we place (x ­
()" - k at the last stage of the polynomial recurrence and we insert the
factor I at k levels and the factor x - ( at n - k levels. We then replace
the dual basis functions dll(t), ... , d,,(t) at the base of the polynomial
recurrence by the coefficients CII ' •.. , c" of the polynomial p(t) with
respect to the hasis bll(x), ... , b/x). These three recurrences can he
derived, as above, hy applying the operator [p(t),]" to every polynomial in
the polynomial recurrence or hy blossoming every polynomial in the
polynomial recurrence and evaluating at the roots of p(t).

Notice that we never actually need to compute the dual basis to find the
coefficients of p(t) relative to the basis b since

coefficients = B[ p]( roots of d) = B[ d]( roots of p).

But the last expression can be computed directly from b by running the
Oslo algorithm for d (i.e., place b at the base of the triangle) and
evaluating at the roots of p.

6. EXAMPLES OF DUAL POLYNOMIAL BASES

Many examples of dual polynomial bases are known. A progressive basis
bll(x), ... , bll(x) with knots (I' (2, .•• ,/ 2", I j + 1l *- I, for 1 ::; i ::; j ::; n, has
the dual Polya basis given by

i=O,l, ... ,n.

Any B-spline basis is locally (over a single knot interval) a progressive
basis. The Bernstein basis is the progressive basis with knots
(D, ,0, 1, , I), and the monomial basis is progressive with knots
(0, ,0, D, , D) [7,20].
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Another interesting dual progressive/Polya pair is the power basis and
the Lagrange basis. Let

k = 0,1, ... , n

be the Lagrange basis for the nodes to,"" t,l' and let

k = 0,1, ... , n

be the power basis at to"'" t". Then

since both sides of this equation are degree n polynomials in t which
agree at the nodes to,.'" t". Notice that up to normalizing constants, the
power and Lagrange dual bases are the progressive/Polya pair for the
knot sequence t I' ... , til' to, ... , til _ I [7,20].

Along these same lines, let us consider some dual bases which are not
progressive/Polya pairs. Let to"'" t", be a sequence of real numbers.
Associate with each node t j a positive integer J.L j such that LJJ.L j = n + 1.
Let Hjk(r), j = 0, ... , m, k = 0, ... , J.Li - I, be the degree n Hermite
basis functions associated with the nodes to,"" t", [14). That is,

Let P;k( x), j = 0, ... ,m, k = 0, ... , J.L j - I, he the generalized power
basis defined by

Then again

since both sides of this equation are degree n polynomials in t which
agree at the nodes t) with multiplicities J.L). In general, the Hermite basis
HJk(r) is not a Polya basis so the generalized power basis is not a
progressive basis.

Another interesting example is Ball's cubic basis [1]:

bo(x) = (I-X)2, b,(x) = 2x(1 _X)2,

bkr) = 2x 2
( 1 - x), b3(x) = x 2

.



334 RONALD N. CiOLDMAN

The dual to Ball's cubic basis is

dlJ(t) = -I" dl(t) = 12(3/2 - I),

d 2(t) = 12
( -1/2 - I), d 1(1) = (I - I(

Since the roots of the dual basis are readily available and since Ball's basis
is normalized to sum to one, the coefficients of any cubic polynomial p( x)
relative to Ball's cubic basis are simply

Po = B [ p ]( 0, 0, 0) , l't = B [ p ] ( 0, 0, 312) ,

P2=B[p](-1/2,1,1), P,=B[p](I,I,I).

Notice that these formulas for the Ball coefficients differ only slightly from
the formulas for the Bernstein coefficients.

As one last example, let us consider the cubic Chebysheff polynomials
[14]:

T2(x) = 2x 2
- I,

Since the Chebysheff basis is triangular, we know by Theorem 2.4 that the
dual basis in reverse order is also triangular. Thus we can calculate this
dual basis by solving a triangular system of equations. Explicitly, the cubic
basis dual to the cubic Chebysheff basis is given by

DIJ(t) = -1(21 2 + 3)/2,

D 2 (1) = -3112,

D1(1) = 3(41 2 + 1)/4,

D,(I) = 1/4.

The Chebysheff basis is orthogonal relative to the inner product [l4]

JI { J 1/2}(f,g) = f(x)g(x)/(I-r) dx.
-[

That is,

Therefore the coefficients of any polynomial p(x) relative to the
Chebysheff basis are given by (p, Tk ). On the other hand, we have shown
that these coefficients are also given by a constant times the blossom of
p(x) evaluated at the roots of the dual basis. Thus we can calculate these
integrals from the blossom of p(x) and the roots of the dual basis.
Alternatively, we could dispense entirely with the roots of the dual basis
and simply apply the de Boor-Fix dual functionals which require only the
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derivatives of the dual basis. That is, by Theorem 3.7 we have

or equivalently in expanded form

335

/

' { J 1/2} [("-i)] () ()p(X)Tk(x)/(1 - X") dx = L j (-I) In! pi (7)D/,-' (7).
-)

This observation allows us to calculate definite integrals as finite sums by
solving a triangular system of linear equations for the coefficients of
Do(t), ... , D,,(t) since the monomial coefficients are essentially the deriva­
tives at zero. Similar observations hold for other sets of orthogonal
polynomials relative to different inner products.

Finally, we note that all the results we have derived so far for polyno­
mial bases {h/t)} are valid as well for locally linearly independent spline
basis {MJt}}. In particular, Marsden's identity, the blossoming and
de Boor-Fix forms of the dual functionals, the Oslo algorithm, and the
recursive procedures for evaluating, differentiating, and blossoming all
extend readily to locally linearly independent spline bases. Thus if S(t) is a
spline in the space spanned by {M;<t)}, that is, if

then we can find the coefficients C
t

by applying the blossoming or de
Boor-Fix dual functionals on any interval affected by c,. Similarly, there
are local recursive procedures for evaluating, differentiating, and blossom­
ing S(t).

There exist many important examples of locally linearly independent
spline bases. Consider, for instance, the space of piecewise polynomials
determined by connection matrices [I8]. If the connection matrices {C)
are totally positive [29], then the space of piecewise polynomials of degree
n associated with the knot vector {t) and the connection matrices {C) has
a locally linearly independent spline basis [4]. A global extension of
Marsden's identity to such spaces is discussed in [4].

Under certain mild restrictions, the space of piecewise polynomials that
are C"-) under reparameterization-often called Beta-splines-is an
example of a space of piecewise polynomials determined by a set of totally
positive connection matrices [18]. Boehm [9] discusses a local rational
quadratic recursive evaluation algorithm for cubic Beta-splines. From the
analysis in Section 5 one would normally expect the first stage of the
general recursive evaluation algorithm for a cubic spline to be rational
cubic in the parameter, so there is a little bit of unexpected simplification
in Boehm's evaluation algorithm.
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7. MARSDEN's IDENTITY AND DUAl. FUNCTIONAI.S-REVISITED

In Marsden's identity (Eq. (2», we express the function (x - 1)" in
terms of a given basis h()( x), ... , h) x). What is so special about the
function (x - {)II? Well if we blossom (x - ()" with respect to x and
evaluate at the roots of a degree 11 polynomial d( I), then, up to constant
multiples, we retrieve the polynomial d( I). That is,

B[(x - t)"](rootsof d(t)) = constant X d(t).

It is this identity which leads directly to the blossoming form of the dual
functionals expressed in Theorems 3.3 and 3.5: that we can find the
coefficients of an arbitrary degree 11 polynomial p( x) with respect to a
given basis h()( x), ... , hll( x) by evaluating the blossom of p(x) at the roots
of the dual basis, i.e.,

where ci = constant X B[ p]( f il , ... , fill)

and f} I' ... , fill are the roots of the dual basis function d/ I).
We could choose to use some other degree 11 polynomial E(x, I) on the

left hand side of Marsden's identity. If we did, then we would still obtain a
blossoming formula for the dual functionals in terms of the roots of the
dual basis but the formula would involve a more complicated expression in
the roots. For example, if we let E(x, () = (tx + J)/, then for any degree
11 polynomial d(t)

B [(Ix + I)"] ( negative reciprocals of the roots of d ( I )) = constant X d ( I ) .

If we take Marsden's identity to be

(IX + I)" = L,d7(/)h;(x),

then we can find the coefficients of an arbitrary degree 11 polynomial p( x)

with respect to a given basis h()( x), ... , hll( x) by evaluating the blossom of
p( x) at the negative reciprocal of the roots of this new dual basis
d~(t), ... , d~(t), i.e.,

p( x) = L,cibi ( x), where ci = constant X B[ p]( - IIfil , ... , - 1Ifill)

and 'i,"'" 'i" are the roots of the dual basis function djU). More
complicated polynomials E(x, t) on the left hand side of Marsden's
identity would yield still more complicated blossoming formulas for the
dual functionals involving yet more complicated expressions in the roots of
the dual basis functions. What is special then about the function (x - I)"
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is that it is very easy to blossom, and the blossoming form of the dual
functionals is a particularly simple expression in the roots of the dual
basis. Nevertheless, the expression E(x, t) that we ultimately choose for
the left hand side of Marsden's identity for a particular basis
b()( x), ... , b,,( x) should depend both on how simple the dual basis func­
tions d~(t), ... , d~(t) become as well as on how complicated an expres­
sion we need to take in their roots to express the blossoming form of the
dual functionals.

We can ask much the same question about the de Boor-Fix form of the
dual functionals. What is so special about the bilinear form [f( t), g( t )],,?
Each bilinear form [1-, w] on a vector space V is represented by a matrix
M with respect to a basis 1'\, ... , I'". That is,

For the de Boor-Fix bilinear form the vector space is the space of degree
n univariate polynomials in t, the basis is 1,(t - T), ... ,(t - T)"/n!, and
the matrix is the (n + 1) X (n + 1) matrix

R=
o

lin! 0···

(-l)"/1l!

o

(It is a lucky accident that by property (i) of Subsection 3.3 the matrix R is
independent of the choice of T. That is, R is invariant under a change of
basis from the Taylor basis at T to the Taylor basis at T*.) What would
happen if we chose a different matrix M and a different bilinear form
[J(t), g(t)]~?

The de Boor-Fix bilinear form is closely tied to the function (x - t)"
that appears on the left hand side of the Marsden identity. Indeed by
property (iii) of Subsection 3.3

[f(t),(x - t)"]" =f(x).

From this formula and the Marsden identity it follows that

and this identity, in turn, leads to the de Boor-Fix form of the dual
functionals, i.e.,
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If we choose a different bilinear form [j{t), g{t )];; represented by a
different matrix M, then to obtain the corresponding dual functionals we
would have to choose a different expression E(x, t) on the left hand side
of the Marsden identity. Let

E(x,t)' = M-1R(x - t)"r.

(Here and in subsequent formulas to keep the notation simple, we shall
slightly abuse notation by not representing (x - t)", or any other polyno­
mial, in terms of its Taylor expansion, although it is the Taylor coefficients
that we must use for the matrix multiplications to make sense.) Then

[f( t), E( x, t)] ~ = f(t) ME( x, t)1

= f(t)R(x - t)"r

= [f(t),(x - t)"L

= f( x).

From this formula and the new Marsden identity

E(x,t) = L,d;(t)b,(x)

it follows again that

and this identity, in turn, leads to the new de Boor-Fix form of the dual
functionals, i.e.,

For example, if M = I, then

[f(t),g(t)]~ = Lkf(k)(O)g(k\O)

E( x, t) = (tx + 1)".

Again the bilinear form [j(r), g{t )];; that we ultimately choose for a
particular basis bo(x), ... , b,/x) should depend both on how simple the
dual basis functions d~{t), ... , d:( t) become as well as on how compli­
cated an expression we need to take in their derivatives to express the de
Boor-Fix form of the dual functionals. Choosing the appropriate left hand
side of Marsden's identity and choosing the appropriate bilinear form for
the dual functionals are intimately related; indeed ultimately they are the
same problem. Several cases where it makes good sense to use more
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complicated expressions for the left hand side of Marsden's identity and to
take more complicated bilinear forms to express the dual functionals are
discussed in [33].

This problem comes up again with piecewise polynomials determined by
connection matrices. With Beta-splines we have two choices: we can
represent the dual functionals using the usual blossom evaluated at
complicated expressions in the knots or we can use a complicated symmet­
ric expression evaluated at the original knots. Both points of view have
been adopted; see [32] for the first and [8] for the second.

8. EXTENSIONS TO MULTIVARIATE POLYNOMIAL BASES

By Theorems 3.3, 3.4 given any arbitrary univariate polynomial basis
bl)( x), ... , b):d there exist unique constants 'YI)' ... , 'Y

JI
and unique param­

eters 5jl , ... ,sJI1 such that if p(:d = LiC;b,( x), then

c j = 'Yj
B [P](Sil"",Sjl1)'

Here we shall show that this result does not extend to arbitrary multivari­
ate polynomial bases. In addition, we shall derive a necessary and suffi­
cient criteria under which this result does remain valid in the multivariate
setting.

To simplify our notation, let us restrict our attention to bivariate
polynomials. Consider then a bivariate basis {bJx, y)IO s i + j s n}} of

(11 : 2) polynomials of total degree n. We begin by extending Marsden's

identity to the bivariate setting. Recall from Section 8 that we have a good
deal of flexibility in our choice for the left hand side, E( x. y, s, I), of the
Marsden identity. We choose to set

E(x, y, 5, I) = (5X + Iy + 1)11

because, as we shall see shortly, this expression is easy to blossom. (This
expression is analogous to setting E(x, I) = (IX + 1)11 in the univariate
setting. There seems to be no useful direct bivariate analogue to the
univariate formula E(x, t) = (x - 1)11') Now in analogy with Theorem 2.1
for every bivariate basis (bJ x, y) lOs i + j s n}} there exists a unique
dual basis {dJs, 1)10 s i + j ::;; n} such that

(sx + ty + I) 11 = Lijd,) 5, t) b,;{ x. y). ( 11)

The proof of this bivariate Marsden identity is much the same as the proof
of Theorem 2.1 so we omit the details here.

640/79iJ·J
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In addition to Marsden's identity, we need to extend the notation of
blossoming to the bivariate setting. Again this is easy to do. Let peS, t) be
a polynomial of total degree n. The blossom or polar form of pes, t) is the
unique, symmetric, multiaffine polynomial B[ p]{(u l , /'1)" .. ,(U II , I'll)}

which reduces to p( 5, t} along the diagonal. That is, the blossom
B[ p H( u l , 1'1)' ... ,( u" ,l',,)} is independent of the order of the pairs of
variables (u l ' 1'1)' ... ,( U", I'll)' each pair of variables (u;, I') appears to
at most the first power, and B[ p H( 5, d, ... , (5, t)} = p( 5, t). Again the
existence and uniqueness of the bivariate blossom are quite straight­
forward [25]. As in the univariate case, the multilinear blossom
B[p]{(UI,I'l,WI), ... ,(ulI,I'",w,,}} is just the homogenized version of the
multiaffine blossom.

Consider, for example, the polynomial on the left hand side of Marsden's
identity (Eq. (11 ». This polynomial is especially simple to blossom with
respect to the variables (x, y). Indeed it is easy to see that

( 12)

because the right hand side is symmetric, multilinear, and reduces to
(sx + ty + J)" when (u i ' I'i' w) = (x, y, I) for i = 1, ... , n.

Every univariate polynomial pet) is a constant multiple of the blossom
of (x - t Y evaluated at its roots. However, not every bivariate polynomial
p( s, t) is a constant multiple of the blossom of (sx + ty + 1)" evaluated at
some appropriate parameters because there are bivariate polynomials
which do not factor into linear factors. We shall see shortly that this
inability to factor bivariate polynomials into linear factors is the main
obstruction to representing the coefficients of an arbitrary bivariate poly­
nomial with respect to a fixed bivariate basis as a multiple of its blossom
evaluated at fixed parameter values.

Given a univariate basis {bk(t)}, Lemma 3.2 establishes that the blos­
soms {B[bk](u l , ••• , u,,)lk * I} always have a common root. This result is
no longer valid for arbitrary bivariate bases. Given a bivariate basis
{bij(x, y)!O ::-:; i + j ::-:; n}, the following result tells us precisely when the
blossoms {B[b;j]{(UI,I'I,WI), ... ,(U",I'",WII)}IU,j) * (k,l)} have a com­
mon root.

LEMMA 8.1. Let {b;/x, y)IO ..:; i + j ::-:; n}} and {d;/s, t)IO ::-:; i + j ::-:; n}
be dual polynomial bases. Then

(i,j) * (k,/)
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That is, the blossoms {B[bijJIU, j) 1=- (k, I)} hw'c a common root if and only
if the polynomial dd x, y) factors into lincar factors,

Proof Suppose that

(i,j) 1=- (k,l).

Then blossoming Eq. (] J) with respect to the variables (x, .F), evaluating at
(Uk/I' l'k/1, Wkll ),···, (Uk/II' l'klll' wklll ), and applying Eq. (12), we obtain

(UkIIS + {'k/l t + wk/d ... (Uk/liS + l'k/"t + Wklll )

= B[bk/]{(Uk/1,I'k/1,Wk/l)"",(Ukll1,l'kItI'Wk/II)}dk/(s,t).

Thus d k/( .1', r) factors into linear factors. Conversely, suppose that

Again blossoming Eq. (J J) with respect to the variables (x, y) and evaluat­
ing at (uk/l' l'kll' Wk/I),·.·, (U kl,,' I'k/II' Wklll ), we obtain

But (dJs, t)} is a polynomial basis; therefore the coefficients of dJs, t)
on the left hand side and the right hand side must be identical, so

(i,j) 1=- (k,l). Q.E.D.

THEOREM 8.2. Let {bJx, y)IO :os; i + j :os; n}} and {dJs, r)IO :os; i + j :os;
n} be dual polynomial bases, and let p(x, y) be an arbitrary polynomial of
total degree n. Then the following two statements are equimlent:

(I) dk/(s, r) = 'Yk/(Uklls + l'k/l t + wk/I) ... (UkIIlS + l'klrJ + Wkl,,);

(2) p(x, y) = L/jc/jb//x, y) where Ck/ = 'YkIB[P]{(uk/l' l'k/I'
wkll ),···, (U klll ' I'k/II' Wklll )}·

That is, the coefficient of bk/( x, y) is gil'en by a constant times the blossom
of p( x, y) emluated at certain fixed parameter mlues if and only if dk,(s, t)
factors into linear factors.
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Proof Suppose that

Since (b,j(x. y)} is a polynomial basis, there exist constants k,) such that

p( x, y) = LliCI,b, /( x. y).

Blossoming both sides with respect to (x, y), evaluating at
(U kll • l'kll' Wkll )' .. ·• (Uklll,l'klll' l1'kl)' and applying Lemma 8.1. we obtain

B [ p ]{ ( II k IJ ' l'kli ' wkll ) •...• ( II k III' i'kllI' Wkill) }

= ck/B[bkl]{(Uk/I.l'kll' wklJ ),···, (Uk/lI.i·klll' wkllI )}

and the result follows by solving for Cki' Conversely. suppose that for any
polynomial p( x. y) of total degree Ii

p( x. y) = L,jCljh,j( x. y).

where c ki = YkIB[p]{(lIkll.l'kll.Wkll)' ...• (lIklll,i·kllI.I1'kllI)}.

Let p(x. y) = (sx + ty + 1)". By Marsden's identity (Eq. (11),

Therefore by assumption

d kI ( s, I) = YkI B [ p ]{ ( Ii k IJ ' {'k II ' 11'kI d ' ( Ii k it" {'kit" W kI,.) }

= Yk/( IIkllS + I'kll l + Wkll ) (lIklllS + i'kill t + Wklll )· Q.E.D.

By Theorem 8.2, given a polynomial basis (bJ x, y)} there exists con­
stants (Yi) and parameters (UIjI.I'ljl"",Wljl)"",(UI/II.l'lj,,,W,j) such
that if p(x. y) = L,jc,A/x. y) then

if and only if the dual basis functions d kt<S, t) factor into linear factors.
Moreover in this case

so the constants {YIj} and the parameters (U l / i • I'ijl' wljl ), ... , (U l / ll • i',jll' wlj )

are unique up to constant multiples. If the parameters {Wi/In} are non-zero.
then we can normalize them so that W'/In = I by an appropriate choice of
the constants (YI). Thus, in this case. there exist unique constants (y,) and
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parameters (lljil' I'jil)"" , (llji/l' I'ii,) such that if p(x, y) = Li/'ijh,/x, y),
then

( 13)

Here we have dehomogenized the multilinear blossom by setting ""'Jill = 1;
thus we have replaced the multilinear blossom by the multiaffine blossom.
If, in addition, the basis functions {hi/x, y)} are normalized so that

then by Eq. (13)

1 = 'YkI B [I]{(llkll,l'kll),· .. ,(llkl/l,I·k!/I)} = 'Ykl'

Therefore when the basis functions are normalized to sum to one.

just as in the univariate case.
Analogous results hold for multivariable polynomials with an arbitrary

number of variables; the proofs are much the same. Notice that all these
results always hold for univariate polynomials because every univariate
polynomial factors into linear factors over the complex numbers.

9. CONCLUSIONS AND OPEN QUESTIONS

We have presented techniques for extending Marsden's identity, the
blossoming and de Boor-Fix forms of the dual functionals, the Oslo
algorithm, and recursive procedures for evaluation, differentiation, and
blossoming from B-spline and progressive polynomial bases to arbitrary
polynomial and locally linearly independent spline bases. The key idea is
to extend Marsden's identity first and then to derive the other formulas
and procedures as consequences of this basic identity by working with the
dual basis.

Many questions remain open. Dual bases satisfy Marsden's identity and
the de Boor-Fix formula. In what other interesting ways are dual bases
related? For example, many bases can be generated by recurrences that
are much simpler than the general rational recurrence presented in
Section 5. Indeed, the Chebysheff basis can be generated by a very simple
two term recurrence [14]. Given a simple recurrence for a particular basis
is there a correspondingly simple recurrence for its dual basis? Or suppose
a basis satisfies Descartes' Law of Signs [29] in some interval; can we say
anything about the behavior of its dual basis with respect to Descartes'
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Law of Signs? This last question is especially important in CAGD where it
is desirable for curves generated from blending functions to satisfy the
variation diminishing property.

Multivariate polynomial and spline bases provide a rich source of
questions. For multivariate spline bases such as box-splines, the dual
functionals are not given simply by evaluating the blossom at the knots
[25, 28]. If the dual basis factors into linear factors, then these factors will
tell us precisely where to evaluate the blossom to obtain the dual fraction­
als. On the other hand, if the dual basis does not factor into linear factors,
then we cannot obtain the dual functionals simply by evaluating the
blossom at appropriate parameter values.

When the dual basis functions factor into closely related linear factors,
the multivariate theory is much the same as in the univariate setting. In
particular, there are simple recursive procedures for evaluation, differen­
tiation, and blossoming for the multivariate Bernstein basis and more
generally for the multivariate analogue of progressive bases-the B-weights
associated with the B-patches [17, 31]. However, even when the dual basis
functions factor into distinct linear factors, it is not clear, in general, how
to generate even high degree rational recursive procedures for evaluation,
differentiation, and blossoming. Moreover, as we have seen, fundamental
problems arise because, unlike univariate polynomials, multivariate poly­
nomials do not necessarily factor into linear factors. That is, the dual basis
may contain irreducible polynomials of high degree. Can we obtain recur­
sive procedures for evaluation, differentiation, and blossoming in this
general setting? All these multivariate questions deserve further attention
and we hope to return to them again sometime soon.
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